OFFSET
1,1
COMMENTS
Note: For the equation a^2 + b^2 = n, if there are two solutions (a,b) and (b,a), then they will be counted separately.
The sequences A216501 and A216671 give how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to.
1, 2, 3, 7 are the first four numbers with class number 1.
a(n) = A217462(n) when n is not the sum of two positive squares.
But when n is the sum of two positive squares, the ordered pairs for the equation x^2+y^2 = n count.
For example,
193 = 12^2 + 7^2.
193 = 7^2 + 12^2.
193 = 11^2 + 2*6^2.
193 = 1^2 + 3*8^2.
193 = 9^2 + 7*4^2.
REFERENCES
David A. Cox, Primes of the Form x^2 + n y^2, Wiley, 1989.
PROG
(PARI) for(n=1, 100, sol=0; for(x=0, 100, if(issquare(n-x*x)&&n-x*x>=0, sol++); if(issquare(n-2*x*x)&&n-2*x*x>=0, sol++); if(issquare(n-3*x*x)&&n-3*x*x>=0, sol++); if(issquare(n-7*x*x)&&n-7*x*x>=0, sol++)); printf(sol", "))
CROSSREFS
Cf. A217462 (related sequence of this when the order does not matter for the equation a^2 + b^2 = n).
Cf. A216501 (how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to, with a > 0, b > 0).
Cf. A216671 (how many of the four k values, k = 1, 2, 3, 7 does the equation a^2 + k*b^2 = n have a solution to, with a >= 0, b >= 0).
Cf. A000925 (number of solutions to n = a^2+b^2 (when the solutions (a, b) and (b, a) are being counted differently) with a >= 0, b >= 0).
Cf. A216282 (number of solutions to n = a^2+2*b^2 with a >= 0, b >= 0).
Cf. A119395 (number of solutions to n = a^2+3*b^2 with a >= 0, b >= 0).
Cf. A216512 (number of solutions to n = a^2+7*b^2 with a >= 0, b >= 0).
KEYWORD
nonn
AUTHOR
V. Raman, Oct 13 2012
STATUS
approved