Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.
%I #60 May 17 2024 18:25:22
%S 10080,8201519488959040182625924708238885435575055666675808000,
%T 1041592975097798103193492437946338450318032069667827616000,
%U 136448679737811551518347509370970336991662201126485417696000,18693469124080182558013608783822936167857721554328502224352000,2598392208247145375563891620951388127332223296051661809184928000,5196784416494290751127783241902776254664446592103323618369856000
%N Extremely abundant numbers: a(1)=10080; thereafter a(n) is a term if for n > m >= 1, sigma(a(n))/(a(n) log log a(n)) > sigma(a(m))/(a(m)log log a(m)).
%C If a(n) is an extremely abundant number, then it is superabundant.
%H T. D. Noe, <a href="/A217867/b217867.txt">Table of n, a(n) for n = 1..156</a>
%H Sadegh Nazardonyavi, <a href="http://oeis.org/wiki/User_talk:S._Nazardonyavi">Extremely abundant number</a>
%H S. Nazardonyavi, S. Yakubovich, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL17/Nazar/nazar4.html">Extremely Abundant Numbers and the Riemann Hypothesis</a>, Journal of Integer Sequences, 17 (2014), Article 14.2.8.
%Y A subset of A004394, A004490.
%K nonn
%O 1,1
%A _Sadegh Nazardonyavi_, Oct 27 2012