|
|
A217862
|
|
Primes p of the form p = 1 + 840*k for some k.
|
|
1
|
|
|
2521, 3361, 4201, 5881, 7561, 9241, 12601, 13441, 14281, 15121, 18481, 20161, 21001, 21841, 26041, 26881, 29401, 30241, 31081, 33601, 35281, 41161, 42841, 45361, 47041, 47881, 51241, 52081, 54601, 55441, 63841, 65521, 66361, 68041, 68881, 74761, 76441, 78121
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
This is a prime sequence based on the wheel factorization of 840. There are 192 congruence classes that form prime wheel spokes mod 840.
|
|
LINKS
|
Harvey P. Dale, Table of n, a(n) for n = 1..1000
|
|
MATHEMATICA
|
Select[Prime[Range[5000]], Mod[#, 840] == 1 &]
Select[840*Range[0, 100]+1, PrimeQ] (* Harvey P. Dale, Mar 03 2018 *)
|
|
CROSSREFS
|
Sequence in context: A172580 A172684 A172652 * A144971 A217588 A264339
Adjacent sequences: A217859 A217860 A217861 * A217863 A217864 A217865
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
Joshua S.M. Weiner, Oct 13 2012
|
|
STATUS
|
approved
|
|
|
|