login
Duplicate of A129824.
4

%I #34 Oct 17 2018 02:16:45

%S 2,4,12,64,700,17424,1053696,160579584,62856336636,63812936890000,

%T 168895157342195152,1169048914836855865344,21209591746609937928524800,

%U 1010490883477487017627972550656,126641164340871500483202065902080000

%N Duplicate of A129824.

%C Number of words less than or equal to the concatenation of the n-th row of Pascal's Triangle.

%C a(n) = 2 * A055612(n). - _Reinhard Zumkeller_, Jan 31 2015

%C Same as A129824. - _Georg Fischer_, Oct 14 2018

%H Reinhard Zumkeller, <a href="/A217716/b217716.txt">Table of n, a(n) for n = 0..69</a>

%F a(n) = Product_{k=0..n} (binomial(n,k) + 1).

%e Row 2 is 1 2 1 and we have 000, 001, 010, 011, 020, 021, 100, 101, 110, 111, 120 and 121 so a(2)=12.

%t Table[Product[Binomial[n, k] + 1, {k, 0, n}], {n, 0, 15}] (* _T. D. Noe_, Mar 21 2013 *)

%K dead

%O 0,1

%A _Jon Perry_, Mar 21 2013