%I #34 Oct 17 2018 02:16:45
%S 2,4,12,64,700,17424,1053696,160579584,62856336636,63812936890000,
%T 168895157342195152,1169048914836855865344,21209591746609937928524800,
%U 1010490883477487017627972550656,126641164340871500483202065902080000
%N Duplicate of A129824.
%C Number of words less than or equal to the concatenation of the n-th row of Pascal's Triangle.
%C a(n) = 2 * A055612(n). - _Reinhard Zumkeller_, Jan 31 2015
%C Same as A129824. - _Georg Fischer_, Oct 14 2018
%H Reinhard Zumkeller, <a href="/A217716/b217716.txt">Table of n, a(n) for n = 0..69</a>
%F a(n) = Product_{k=0..n} (binomial(n,k) + 1).
%e Row 2 is 1 2 1 and we have 000, 001, 010, 011, 020, 021, 100, 101, 110, 111, 120 and 121 so a(2)=12.
%t Table[Product[Binomial[n, k] + 1, {k, 0, n}], {n, 0, 15}] (* _T. D. Noe_, Mar 21 2013 *)
%K dead
%O 0,1
%A _Jon Perry_, Mar 21 2013