OFFSET
0,2
COMMENTS
The sequence A217686 gives the sequence of values n such that Lucas(n) get increasingly closer to the powers of 10 (by the ratio between the Lucas number to the nearest power of 10).
Given that for sufficiently large values of n, Fibonacci(n) ~ Lucas(n)/sqrt(5) ~ (((1+sqrt(5))/2)^n)/(sqrt(5)), the intermediate differences between the terms in this sequence also need to be a member of the sequence A217686.
PROG
(PARI) default(realprecision, 1000); a=vector(100, i, (contfracpnqn(contfrac(log((1+sqrt(5))/2)/log(10), 0, i))[2, 1]))
log_fibonacci(j)=(j*log((1+sqrt(5))/2)/log(10))-(log(sqrt(5))/log(10))
deviation(k)=abs(round(log_fibonacci(k))-log_fibonacci(k))
n=6; err=deviation(n); m=3; while(n<10^20, if(deviation(n+a[m])<err, n=n+a[m]; err=deviation(n); print(n), m++))
CROSSREFS
KEYWORD
nonn,base
AUTHOR
V. Raman, Oct 11 2012
STATUS
approved