login
A217652
Number of isolated nodes over all labeled directed graphs on n nodes.
2
0, 1, 2, 12, 256, 20480, 6291456, 7516192768, 35184372088832, 648518346341351424, 47223664828696452136960, 13617340432139183023890366464, 15576890575604482885591488987660288, 70778732319555200400381918345807787982848
OFFSET
0,3
COMMENTS
a(n) = Sum_{k=1..n} A217580(n,k) * k.
a(n) is also the number of labeled directed graphs on n nodes with an "Emperor". - Rémy-Robert Joseph, Nov 12 2012
LINKS
FORMULA
E.g.f.: x * A(x) where A(x) is the e.g.f. for A053763.
a(n) = 2^(n^2-3*n+2)*n. - Alois P. Heinz, Oct 09 2012
MAPLE
a:= n-> 2^(n^2-3*n+2)*n:
seq (a(n), n=0..15); # Alois P. Heinz, Oct 09 2012
MATHEMATICA
nn=15; s=Sum[2^(n^2-n)x^n/n!, {n, 0, nn}]; Range[0, nn]! CoefficientList[Series[x s, {x, 0, nn}], x]
PROG
(Maxima) A217652(n):=2^(n^2-3*n+2)*n$ makelist(A217652(n), n, 0, 10); /* Martin Ettl, Nov 13 2012 */
CROSSREFS
See also A123903 (case of tournaments) and A219116 (case of semicomplete digraphs) Rémy-Robert Joseph, Nov 12 2012
Sequence in context: A231074 A132481 A369680 * A320212 A361749 A012549
KEYWORD
nonn
AUTHOR
Geoffrey Critzer, Oct 09 2012
STATUS
approved