OFFSET
0,2
COMMENTS
Also, number of maximal independent sets in the 3-dimensional (2, 3, n) grid graph. [Euler et al.] - N. J. A. Sloane, Nov 21 2013
Column 3 of A217637.
LINKS
R. H. Hardin, Table of n, a(n) for n = 0..184
R. Euler, P. Oleksik, Z. Skupien, Counting Maximal Distance-Independent Sets in Grid Graphs, Discussiones Mathematicae Graph Theory. Volume 33, Issue 3, Pages 531-557, ISSN (Print) 2083-5892, July 2013; http://www.degruyter.com/view/j/dmgt.2013.33.issue-3/dmgt.1707/dmgt.1707.xml
FORMULA
Empirical: a(n) = 2*a(n-1) +9*a(n-2) -2*a(n-3) -17*a(n-4) -4*a(n-5) +8*a(n-6) -3*a(n-7) +a(n-8) -3*a(n-9) -2*a(n-10) +4*a(n-11)
Euler et al. give an explicit g.f. and recurrence, and so (presumably) prove this recurrence is correct. - N. J. A. Sloane, Nov 21 2013
EXAMPLE
Some solutions for n=3
..1..0..0....0..0..0....0..0..0....1..0..0....0..0..1....0..0..1....1..1..0
..0..1..0....0..0..0....0..0..1....0..0..0....0..0..1....0..0..1....1..0..0
..0..0..1....0..1..1....0..0..1....1..0..1....0..0..0....0..0..1....0..0..0
CROSSREFS
KEYWORD
nonn
AUTHOR
R. H. Hardin Oct 09 2012
STATUS
approved