login
A217621
Primes of the form 2*n^2 + 90*n + 43.
9
43, 331, 2311, 3931, 7351, 8971, 18043, 19231, 23011, 31543, 33091, 37951, 46771, 50551, 58543, 60631, 81043, 133711, 149731, 173671, 188143, 226843, 251791, 296251, 310291, 319831, 364543, 385351, 395971, 412171, 417643, 439891, 474343, 540871, 625111, 631843
OFFSET
1,1
COMMENTS
Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1939 is a square. - Vincenzo Librandi, Apr 09 2015
LINKS
MATHEMATICA
Select[Table[2 n^2 + 90 n + 43, {n, 0, 700}], PrimeQ]
PROG
(Magma) [a: n in [0..700] | IsPrime(a) where a is 2*n^2+90*n+43];
CROSSREFS
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), A217500 (k=17), A217501 (k=18), A217620 (k=19), this sequence (k=21).
Subsequence of A002145.
Sequence in context: A123795 A364320 A346575 * A213554 A164783 A291861
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 09 2012
STATUS
approved