login
A217618
a(n) = A217578(n)/n.
1
3, 2, 3, 2, 3, 4, 5, 3, 11, 2, 3, 2, 3, 2, 5, 3, 3, 16, 3, 2, 15, 2, 5, 2, 3, 8, 5, 3, 11, 2, 3, 2, 3, 2, 5, 8, 3, 6, 3, 2, 13, 2, 13, 2, 3, 10, 11, 5, 11, 4, 3, 4, 3, 9, 13, 4, 3, 7, 3, 4, 13, 4, 5, 7, 3, 4, 5, 3, 11, 4, 5, 4, 7, 3, 5, 3, 7, 6, 5, 3, 17, 3
OFFSET
1,1
COMMENTS
Inspired by Problem 300 in Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
LINKS
Kin Y. Li, Problem 300, Mathematical Excalibur, Vol. 13, No. 1, February-April, 2008.
EXAMPLE
For n=5, odd, 5*2=10, 5*3=15, so 3 is the smallest k such that all digits of 5*k are odd.
For n=8, even, 8*2=16, 8*3=24, so 3 is the smallest k such that all digits of 8*k are even.
MATHEMATICA
Table[k = 2; While[d = IntegerDigits[k*n]; If[OddQ[n], done = And @@ OddQ[d], done = And @@ EvenQ[d]]; ! done, k++]; k, {n, 100}] (* T. D. Noe, Oct 10 2012 *)
CROSSREFS
Cf. A217578.
Sequence in context: A316290 A029211 A246925 * A018837 A097618 A368276
KEYWORD
nonn,base
AUTHOR
Michel Marcus, Oct 09 2012
STATUS
approved