%I
%S 7,37,53,89,113,127,211,293,307,449,541,577,587,593,683,691,719,797,
%T 839,929,937,1259,1297,1399,1471,1499,1567,1709,1777,1801,1811,1847,
%U 1973,1979,2039,2221,2467,2503,2579,2633,2647,2819,2939,3037,3061,3109,3187,3271
%N The only prime p such that 3a < p < 3b where a, b are consecutive primes.
%C Corresponding values of ba: 1, 2, 2, 2, 4, 2, 4, 4, 2, 2, 2, 2, 4, 2, 2, 4, 2, 6, 4, 4, 2, 2, 2, 4, 4, 4, 2, 2, 6, 2, 6, 4, 6, 2, 6, 4, 2, 10. In most cases ba = 2.
%C 3isolated primes according to the classification given in the paper on link (see Section 10).  _Vladimir Shevelev_, Oct 07 2012
%H Zak Seidov, <a href="/A217561/b217561.txt">Table of n, a(n) for n = 1..1000</a>
%H V. Shevelev, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos primes, their generalizations, and classifications of primes</a>, J. Integer Seq. 15 (2012) Article 12.5.4
%e 7 is the only prime in the interval [3*2, 3*3] = [6,9],
%e 37 is the only prime in the interval [3*11, 3*13] = [33,39],
%e 53 is the only prime in the interval [3*17, 3*19] = [51,57].
%t a = 2; b = 3; s = {}; k = 3; Do[If[(p=NextPrime[k*a])< k*b && NextPrime[p] > k*b, AppendTo[s, p]]; a = b; b = NextPrime[b], {100}]; s
%t NextPrime/@Transpose[Select[3*Partition[Prime[Range[200]],2,1], NextPrime[ #[[1]]] == NextPrime[#[[2]],1]&]][[1]] (* _Harvey P. Dale_, Oct 12 2012 *)
%Y Cf. A166251 (k=2).
%K nonn
%O 1,1
%A _Zak Seidov_, Oct 06 2012
