

A217515


Basen state complexity of partitioned deterministic finite automaton (PDFA) for the periodic sequence (123)*.


15



6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6, 4, 3, 6
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


REFERENCES

Klaus Sutner and Sam Tetruashvili, Inferring Automatic Sequences, http://www.cs.cmu.edu/~sutner/papers/autoseq.pdf


LINKS

Table of n, a(n) for n=2..92.


FORMULA

Periodic with period length 3.
G.f.: x^2*(6 + 4*x + 3*x^2)/((1  x^3)). [Vincenzo Librandi, Nov 18 2012]


MATHEMATICA

CoefficientList[Series[(6 + 4*x + 3*x^2)/((1  x^3)), {x, 0, 40}], x] (* Vincenzo Librandi, Nov 18 2012 *)


PROG

(MAGMA) &cat[[6, 4, 3]: n in [0..30]]; // Vincenzo Librandi, Nov 18 2012


CROSSREFS

Sequence in context: A224927 A200104 A154747 * A079624 A035335 A011097
Adjacent sequences: A217512 A217513 A217514 * A217516 A217517 A217518


KEYWORD

nonn,easy


AUTHOR

N. J. A. Sloane, Oct 07 2012


EXTENSIONS

Terms corrected by Vincenzo Librandi, Nov 18 2012


STATUS

approved



