login
A217500
Primes of the form 2*n^2 + 74*n + 35.
9
191, 863, 1091, 1871, 2963, 3491, 3863, 4451, 9011, 15731, 21191, 21611, 29363, 30851, 35531, 42863, 44651, 45863, 47711, 50231, 52163, 60251, 65963, 68171, 71171, 75011, 100151, 101051, 109331, 112163, 119891, 144611, 147863, 164663, 179951, 204791, 254963
OFFSET
1,1
COMMENTS
Conjecture: 2^a(n)-1 is not prime; in other words, these primes are included in A054723.
2*a(n) + 1299 is a square. - Vincenzo Librandi, Apr 09 2015
LINKS
MATHEMATICA
Select[Table[2n^2 + 74n + 35, {n, 600}], PrimeQ]
PROG
(Magma) [a: n in [1..600] | IsPrime(a) where a is 2*n^2 + 74*n + 35];
CROSSREFS
Cf. Primes of the form 2*n^2+2*(2*k+3)*n+(2*k+1): A176549 (k=0), A154577 (k=2), A154592 (k=3), A154601 (k=4), A217494 (k=7), A217495 (k=10), A217496 (k=11), A217497 (k=12), A217498 (k=13), A217499 (k=16), this sequence (k=17), A217501 (k=18), A217620 (k=19), A217621 (k=21).
Cf. A054723.
Subsequence of A002145.
Sequence in context: A108848 A052165 A103733 * A142451 A083980 A144327
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Oct 09 2012
STATUS
approved