OFFSET
0,3
COMMENTS
For the o.g.f. for general powers of Fibonacci numbers F=A000045 see A056588 (row polynomials as numerators) and A055870 (row polynomials as denominator). The even part of the bisection leads to the o.g.f. for powers of F(2*n), and the partial sums of these powers are then given by dividing this o.g.f. by (1-x). For the o.g.f.s for F(n)^5 and F(2*n)^5 see A056572 and A215044, respectively.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..475
R. S. Melham, Some conjectures concerning sums of odd powers of Fibonacci and Lucas numbers, The Fibonacci Quart. 46/47 (2008/2009), no. 4, 312-315.
K. Ozeki, On Melham's sum, The Fibonacci Quart. 46/47 (2008/2009), no. 2, 107-110.
H. Prodinger, On a sum of Melham and its variants, The Fibonacci Quart. 46/47 (2008/2009), no. 3, 207-215.
FORMULA
a(n) = Sum_{k=0..n} F(2*k)^5, n>=0.
O.g.f.: x*(1+99*x+416*x^2+99*x^3+x^4)/((1-3*x+x^2)*(1-18*x+x^2)*(1-123*x+x^2)*(1-x)).
a(n) = 2*(F(2*(n+1)) - F(2*n))/5 - F(3*(2*n+1))/20 +
(F(10*(n+1)) - F(10*n))/F(10)^2 - 7/22 (from the partial fraction decomposition of the o.g.f.).
a(n) = (1/11)*F(2*n+1)^5 - (15/44)*F(2*n+1)^3 + (25/44)*F(2*n+1) - 7/22 (from Ozeki reference, Theorem 2, p. 109 --- with a misprint -- and from Prodinger reference, p. 207).
a(n) =(F(2*n+1)-1)^2*(4*F(2*n+1)^3 + 8*F(2*n+1)^2 - 3*F(2*n+1) - 14)/44 (an example for Melham's conjecture, see the reference, eq. (2.7) for m=2).
EXAMPLE
a(2) = 244 = 2*(8-3)/5 - 610/20 + (832040-6765)/55^2 - 7/22.
a(2) = 244 = (1/11)*5^5 - (15/44)*5^3 + (25/44)*5 - 7/22.
a(2) = 244 = (5-1)^2*(4*5^3 + 8*5^2 - 3*5 - 14)/44
= (4*5^3 + 8*5^2 - 3*5 - 14)*(4/11).
MATHEMATICA
Table[Sum[Fibonacci[2*k]^5, {k, 0, n}], {n, 0, 50}] (* G. C. Greubel, Apr 12 2017 *)
PROG
(PARI) a(n) = sum(k=1, n, fibonacci(2*k)^5); \\ Michel Marcus, Feb 29 2016
CROSSREFS
KEYWORD
nonn,easy,changed
AUTHOR
Wolfdieter Lang, Oct 11 2012
STATUS
approved