OFFSET
0,3
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..200
FORMULA
a(n) = sum((-1)^(n-k)*t(k)^2, k=0..n), where t = A000670 (ordered Bell numbers).
a(n) ~ (n!)^2 / (4 * (log(2))^(2*n+2)). - Vaclav Kotesovec, Nov 08 2014
MATHEMATICA
t[n_] := Sum[StirlingS2[n, k]k!, {k, 0, n}]; Table[Sum[(-1)^(n-k)t[k]^2, {k, 0, n}], {n, 0, 100}]
PROG
(Maxima)
t(n):=sum(stirling2(n, k)*k!, k, 0, n);
makelist(sum((-1)^(n-k)*t(k)^2, k, 0, n), n, 0, 40);
(Magma)
A000670:=func<n | &+[StirlingSecond(n, i)*Factorial(i): i in [0..n]]>;
[&+[(-1)^(n-k)*A000670(k)^2: k in [0..n]]: n in [0..14]]; // Bruno Berselli, Oct 03 2012
(PARI) for(n=0, 30, print1(sum(k=0, n, (-1)^(n-k)*(sum(j=0, k, j!*stirling(k, j, 2)))^2), ", ")) \\ G. C. Greubel, Feb 07 2018
CROSSREFS
KEYWORD
nonn
AUTHOR
Emanuele Munarini, Oct 02 2012
STATUS
approved