This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217291 Permutation of natural numbers arising from applying the walk of right triangular type-1 spiral (defined in A214230) to the data of square spiral (e.g. A214526). 0
 1, 2, 4, 16, 5, 6, 7, 8, 9, 10, 27, 11, 3, 15, 35, 63, 36, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 51, 84, 52, 28, 12, 14, 34, 62, 98, 142, 99, 64, 37, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 83, 124, 173, 125, 85, 53, 29, 13, 33, 61, 97, 141, 193, 253 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 LINKS PROG (Python) SIZE = 29    # must be 4k+1 grid = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid[posY*SIZE+posX]=1 n = 2 def walk(stepX, stepY, chkX, chkY):   global posX, posY, n   while 1:     posX+=stepX     posY+=stepY     grid[posY*SIZE+posX]=n     n+=1     if grid[(posY+chkY)*SIZE+posX+chkX]==0:         return while posX:     walk(0, -1, 1, 0)    # up     walk(1, 0, 0, 1)     # right     walk(0, 1, -1, 0)    # down     walk(-1, 0, 0, -1)   # left import sys grid2 = [0] * (SIZE*SIZE) posX = posY = SIZE//2 grid2[posY*SIZE+posX]=1 def walk2(stepX, stepY, chkX, chkY):   global posX, posY   while 1:     a = grid[posY*SIZE+posX]     if a==0:         sys.exit(1)     print a,     posX+=stepX     posY+=stepY     grid2[posY*SIZE+posX]=1     if grid2[(posY+chkY)*SIZE+posX+chkX]==0:         return while 1:     walk2(0, -1,  1,  1)    # up     walk2( 1, 1, -1,  0)    # right-down     if posX==SIZE-1:         break     walk2(-1, 0,  0, -1)    # left CROSSREFS Cf. A214230, A214526, A217010. Sequence in context: A125594 A097542 A277850 * A094670 A110005 A019540 Adjacent sequences:  A217288 A217289 A217290 * A217292 A217293 A217294 KEYWORD nonn AUTHOR Alex Ratushnyak, Sep 30 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 15 20:49 EST 2019. Contains 320138 sequences. (Running on oeis4.)