OFFSET
0,5
COMMENTS
A labeled relation on 6 nodes will be connected with probability > 99%. It will have at least 10 and no more than 26 edges with probability > 99%.
A random labeled relation can be generated in Mathematica:
GraphPlot[g=Table[RandomInteger[],{6},{6}], DirectedEdges->True, VertexLabeling->True, SelfLoopStyle->True, MultiedgeStyle->True]
Sum {k=0...n^2} T(n,k)*k = A185968. - Geoffrey Critzer, Oct 07 2012
LINKS
Paul D. Hanna, Rows 0..20, as a flattened table of n, a(n) for n = 0..2890.
FORMULA
T(n,k) = binomial(n^2,k).
E.g.f.: Sum{n>=0}(1+y)^(n^2)*x^n/n!. - Geoffrey Critzer, Oct 07 2012
G.f.: A(x,y) = Sum_{n>=0} x^n*(1+y)^n*Product_{k=1..n} (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1)) due to a q-series identity. - Paul D. Hanna, Aug 22 2013
G.f.: A(x,y) = 1/(1- q*x/(1- (q^3-q)*x/(1- q^5*x/(1- (q^7-q^3)*x/(1- q^9*x/(1- (q^11-q^5)*x/(1- q^13*x/(1- (q^15-q^7)*x/(1- ...))))))))), a continued fraction where q = (1+y), due to an identity of a partial elliptic theta function. - Paul D. Hanna, Aug 22 2013
EXAMPLE
G.f.: A(x,y) = 1 + x*(1+y) + x^2*(1+y)^4 + x^3*(1+y)^9 + x^4*(1+y)^16 +...
Triangle T(n,k) begins:
1;
1, 1;
1, 4, 6, 4, 1;
1, 9, 36, 84, 126, 126, 84, 36, 9, 1;
1, 16, 120, 560, 1820, 4368, 8008, 11440, 12870, 11440, ...
MATHEMATICA
Table[Table[Binomial[n^2, k], {k, 0, n^2}], {n, 0, 6}] //Grid
PROG
(PARI) {T(n, k)=polcoeff((1+x+x*O(x^k))^(n^2), k)}
for(n=0, 6, for(k=0, n^2, print1(T(n, k), ", ")); print("")) \\ Paul D. Hanna, Aug 22 2013
(PARI) {T(n, k)=polcoeff(polcoeff(sum(m=0, n, x^m*(1+y)^m*prod(k=1, m, (1-x*(1+y)^(4*k-3))/(1-x*(1+y)^(4*k-1) +x*O(x^n)))), n, x), k, y)}
{for(n=0, 6, for(k=0, n^2, print1(T(n, k), ", ")); print(""))} \\ Paul D. Hanna, Aug 22 2013
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Sep 30 2012
STATUS
approved