login
Irregular triangle read by rows: T(n,k) (n>=1, 1 <= k <= A217208(n)) = number of strings of n 2's and 3's having a tail of length k.
4

%I #29 Aug 02 2014 06:14:09

%S 2,2,1,1,4,2,2,6,5,3,1,1,12,9,6,2,3,20,18,12,6,7,0,0,0,1,40,34,25,11,

%T 14,1,0,1,2,74,71,47,24,28,1,3,2,3,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,

%U 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,2,1

%N Irregular triangle read by rows: T(n,k) (n>=1, 1 <= k <= A217208(n)) = number of strings of n 2's and 3's having a tail of length k.

%C See A217208 or A216730 for definition of tail.

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="http://arxiv.org/abs/1212.6102">On Curling Numbers of Integer Sequences</a>, arXiv:1212.6102, Dec 25 2012.

%H B. Chaffin, J. P. Linderman, N. J. A. Sloane and Allan Wilks, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Sloane/sloane3.html">On Curling Numbers of Integer Sequences</a>, Journal of Integer Sequences, Vol. 16 (2013), Article 13.4.3.

%H Ben Chaffin and N. J. A. Sloane, <a href="/A217209/a217209.txt">Rows 1 through 48</a> [The first 35 rows were computed by _N. J. A. Sloane_]

%H <a href="/index/Cu#curling_numbers">Index entries for sequences related to curling numbers</a>

%e Rows 1 through 8 are:

%e 2,

%e 2, 1, 1,

%e 4, 2, 2,

%e 6, 5, 3, 1, 1,

%e 12, 9, 6, 2, 3,

%e 20, 18, 12, 6, 7, 0, 0, 0, 1,

%e 40, 34, 25, 11, 14, 1, 0, 1, 2,

%e 74, 71, 47, 24, 28, 1, 3, 2, 3, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 1,

%e 148, 139, 95, 48, 56, 6, 4, 3, 6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 3, 1, 1,

%e ...

%Y Cf. A217208 (row lengths), A216813 (means), A122536 (first column), A217210 (second column), A216730, A094004, A090822.

%K nonn,tabf

%O 1,1

%A _N. J. A. Sloane_, Oct 01 2012