The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A217194 Number of unlabeled simple graphs with n nodes of 2 colors whose components are path graphs. 2
 1, 2, 6, 16, 42, 106, 267, 656, 1602, 3868, 9270, 22048, 52140, 122580, 286798, 667944, 1549259, 3579738, 8242638, 18917600, 43286909, 98768820, 224768425, 510235760, 1155553468, 2611251662, 5888421059, 13252176464, 29768501556, 66749440076, 149415504274 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Here, a path graph is a connected graph with no cycles such that each node has degree at most two. LINKS Alois P. Heinz, Table of n, a(n) for n = 0..1000 FORMULA G.f.: Product_{i>=1} 1/(1-x^i)^(2^(i-1)+2^(floor((i+1)/2)-1)). EULER transform of A005418. EXAMPLE a(3) = 16 because we have: w w w; w w b; w b b; b b b; w w-w; w w-b; w b-b; b w-w; b w-b; b b-b; w-w-w; w-w-b; w-b-w; b-w-b; b-b-w; b-b-b, where the 2 colors are black b and white w. MAPLE with(numtheory): a:= proc(n) option remember; `if`(n=0, 1, add(add(d*(2^(d-1)+       2^(floor((d+1)/2)-1)), d=divisors(j))*a(n-j), j=1..n)/n)     end: seq(a(n), n=0..30);  # Alois P. Heinz, Sep 27 2012 MATHEMATICA nn=30; p=Product[1/(1- x^i)^(2^(i-1)+2^(Floor[(i+1)/2]-1)), {i, 1, nn}]; CoefficientList[Series[p, {x, 0, nn}], x] CROSSREFS Cf.: A217093, A005380. Sequence in context: A143123 A102699 A266124 * A304662 A296625 A156664 Adjacent sequences:  A217191 A217192 A217193 * A217195 A217196 A217197 KEYWORD nonn AUTHOR Geoffrey Critzer, Sep 27 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 29 16:58 EST 2020. Contains 331347 sequences. (Running on oeis4.)