login
Van der Waerden numbers w(2;5,n).
1

%I #26 Nov 30 2017 16:20:17

%S 178,206,260

%N Van der Waerden numbers w(2;5,n).

%C w(2;5,5)=178 (Stevens and Shantaram, 1978),w(2;5,6)=206 (Kouril, 2006), and w(2;5,7)=260 (Ahmed).

%D M. Kouril, A Backtracking Framework for Beowulf Clusters with an Extension to Multi-Cluster Computation and Sat Benchmark Problem Implementation, Ph. D. Thesis, University of Cincinnati, Engineering: Computer Science and Engineering, 2006.

%H T. Ahmed, <a href="http://users.encs.concordia.ca/~ta_ahmed/tanbir_ahmed_vdw_JIS.pdf">Some More van der Waerden Numbers</a>

%H T. Ahmed, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL16/Ahmed/ahmed2.html">Some more Van der Waerden numbers</a>, J. Int. Seq. 16 (2013) 13.4.4

%H R. Stevens and R. Shantaram, <a href="http://dx.doi.org/10.1090/S0025-5718-1978-0491468-X">Computer-generated van der Waerden partitions</a>, Math. Computation, 32 (1978), 635-636.

%e w(2;5,5)=178.

%Y Cf. A171081, A171082.

%K nonn,bref,hard,more

%O 5,1

%A _Tanbir Ahmed_, Sep 24 2012