OFFSET
1,1
COMMENTS
Is this the union of A058383 and {3}? - R. J. Mathar, Sep 28 2012
Yes, it is, because the only Fermat prime == 0 or 1 mod 3 is 3. - Robert Israel, Mar 02 2018
Generalized cuban primes are primes of the form x^2 + xy + y^2; or: primes of form x^2 + 3*y^2; or: primes == 0 or 1 mod 3. Class 1- (or Pierpont) primes: primes of the form 2^t*3^u + 1.
LINKS
Ray Chandler, Table of n, a(n) for n = 1..8379 (terms < 10^1000)
MATHEMATICA
nn = 100000; t1 = Join[{3}, Select[Prime[Range[nn]], MemberQ[{1}, Mod[#, 3]] &]]; t2 = Select[Prime[Range[nn]], Max @@ First /@ FactorInteger[# - 1] < 5 &]; Intersection[t1, t2] (* T. D. Noe, Sep 26 2012 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Jonathan Vos Post, Sep 24 2012
STATUS
approved