%I #43 Aug 09 2022 07:04:23
%S 1,2,2,6,18,3,24,156,72,4,120,1520,1260,220,5,720,17310,21000,7020,
%T 600,6,5040,232932,363720,187320,32970,1554,7,40320,3698744,6794256,
%U 4746840,1351840,141288,3920,8,362880,68680656,139241088,121105152,48822480,8625456,573048,9720,9,3628800,1471193370
%N Triangle read by rows: T(n,k) is the number of functions f:{1,2,...,n}->{1,2,...,n} that have exactly k nonrecurrent elements mapped to some (one or more) recurrent element. n >= 1, 0 <= k <= n-1.
%C x in {1,2,...,n} is a recurrent element if there is some k such that f^k(x) = x where f^k(x) denotes iterated functional composition. In other words, a recurrent element is in a cycle of the functional digraph.
%C Row sums = n^n.
%C First column (k = 0) counts the n! bijective functions.
%C T(n,n-1) counts the n constant functions.
%C Conjecture: every entry in row n is divisible by n. - _Jon Perry_, Sep 21 2012
%H Joerg Arndt, <a href="/A216971/b216971.txt">Table of n, a(n) for n = 1..528</a>
%F E.g.f.: 1/(1-x*exp(y*T(x))) - 1 where T(x) is the e.g.f. for A000169.
%F Sum_{k=1..n-1} k * T(n,k) = A001864(n). - _Geoffrey Critzer_, Jan 01 2013
%e Triangle starts:
%e 1,
%e 2, 2,
%e 6, 18, 3,
%e 24, 156, 72, 4,
%e 120, 1520, 1260, 220, 5,
%e 720, 17310, 21000, 7020, 600, 6,
%e 5040, 232932, 363720, 187320, 32970, 1554, 7,
%e ...
%t nn=7;t=Sum[n^(n-1)x^n/n!,{n,1,nn}];f[list_]:=Select[list,#>0&];Drop[Map[f,Range[0,nn]! CoefficientList[Series[1/(1-x Exp[y t]),{x,0,nn}],{x,y}]],1]//Grid
%o (PARI)
%o N=15; x='x+O('x^N);
%o T=serreverse(x*exp(-x));
%o egf=1/(1-x*exp('y*T)) - 1;
%o v=Vec(serlaplace(egf));
%o { for (n=1, N-1, /* print triangle: */
%o row = Pol( v[n], 'y );
%o row = polrecip( row );
%o print( Vec(row) );
%o ); }
%o /* _Joerg Arndt_, Sep 21 2012 */
%Y Cf. A001864.
%K nonn,nice,tabl
%O 1,2
%A _Geoffrey Critzer_, Sep 21 2012