login
A216924
Consecutive Pythagorean primes p = A002144(r) and q = A002144(r+1) such that q - p > log(p)^2. The number a(n) is the n-th value of p.
1
5, 17, 113, 197, 461, 881, 1493, 1801, 39581, 50593, 78989, 180797, 183089, 241601, 250501, 268297, 339841, 485209, 492421, 618637, 919421, 1264337, 1561829, 1637813, 1994101, 2116129, 2191633, 2243909, 2314373, 3254929, 3422917, 3440621, 4468889, 4855297, 4874717, 5059321, 5526613, 6118769, 7856441, 9199153
OFFSET
1,1
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
MATHEMATICA
t = {}; p = 5; Do[While[q = p; While[p = NextPrime[p]; Mod[p, 4] == 3]; p - q < Log[q]^2]; AppendTo[t, q], {25}]; t (* T. D. Noe, Sep 21 2012 *)
PROG
(PARI) r=1; v=List(); p=5; forprime(q=11, 1e7, if(q%4>1, next); if(q-p>r, r=log(p)^2\1; if(q-p>r, print1(p", "); listput(v, p))); p=q); Vec(v) \\ Charles R Greathouse IV, Sep 21 2012
CROSSREFS
Cf. A182315, A002144 (Pythagorean primes).
Sequence in context: A197912 A203114 A198027 * A009240 A180387 A324411
KEYWORD
nonn
AUTHOR
Thomas Ordowski, Sep 20 2012
EXTENSIONS
a(22)-a(40) from Charles R Greathouse IV, Sep 21 2012
STATUS
approved