The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216913 a(n) = Gauss_primorial(3*n, 3) / Gauss_primorial(3*n, 3*n). 2
 1, 2, 1, 2, 5, 2, 7, 2, 1, 10, 11, 2, 13, 14, 5, 2, 17, 2, 19, 10, 7, 22, 23, 2, 5, 26, 1, 14, 29, 10, 31, 2, 11, 34, 35, 2, 37, 38, 13, 10, 41, 14, 43, 22, 5, 46, 47, 2, 7, 10, 17, 26, 53, 2, 55, 14, 19, 58, 59, 10, 61, 62, 7, 2, 65, 22, 67, 34, 23, 70, 71 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS The term Gauss primorial was introduced in A216914 and denotes the restriction of the Gauss factorial N_n! (see A216919) to prime factors. Multiplicative because both A007947 and A109007 are. - Andrew Howroyd, Aug 02 2018 LINKS Andrew Howroyd, Table of n, a(n) for n = 1..1000 FORMULA a(n) = n/Sum_{k=1..3n} floor(cos^2(Pi*k^(3n)/(3n))). - Anthony Browne, May 24 2016 a(n) = A007947(n)/A109007(n). - Andrew Howroyd, Aug 02 2018 a(n) = Sum_{d|n} phi(d)*mu(3d)^2. - Ridouane Oudra, Oct 19 2019 MATHEMATICA Table[n/Sum[Floor[Cos[Pi k^(3 n)/(3 n)]^2], {k, 3 n}], {n, 71}] (* Michael De Vlieger, May 24 2016 *) PROG (PARI) a(n)={factorback(factor(n)[, 1])/gcd(3, n)} \\ Andrew Howroyd, Aug 02 2018 (Sage) def Gauss_primorial(N, n):     return mul(j for j in (1..N) if gcd(j, n) == 1 and is_prime(j)) def A216913(n): return Gauss_primorial(3*n, 3)/Gauss_primorial(3*n, 3*n) [A216913(n) for n in (1..80)] (MAGMA) [&+[EulerPhi(d)*MoebiusMu(3*d)^2:d in Divisors(n)]:n in [1..70]]; // Marius A. Burtea, Oct 19 2019 CROSSREFS Cf. A007947, A109007, A204455, A216914, A216919. Sequence in context: A182436 A064192 A284553 * A124218 A025165 A212431 Adjacent sequences:  A216910 A216911 A216912 * A216914 A216915 A216916 KEYWORD nonn,mult AUTHOR Peter Luschny, Oct 02 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified July 5 00:40 EDT 2020. Contains 335457 sequences. (Running on oeis4.)