The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216912 a(n) = denominator(B°(2*n))/4 where the B°(n) are Zagier's modified Bernoulli numbers. 1
 6, 20, 315, 280, 66, 3003, 78, 9520, 305235, 20900, 138, 19734, 6, 7540, 15575175, 590240, 6, 107666559, 222, 11996600, 50536395, 19780, 282, 31534932, 66, 1060, 48532365, 738920, 354, 83912718435, 366, 1180480, 485415, 1340, 60918, 3667092237666, 438, 740 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Sequence given for a(1)-a(15) in Note 6.2, p. 13 of Dixit and others. LINKS Seiichi Manyama, Table of n, a(n) for n = 1..500 M. W. Coffey, V. de Angelis, A. Dixit, V. H. Moll, et al., The Zagier polynomials. Part II: Arithmetic properties of coefficients, arXiv:1303.6590 [math.NT], 2013. A. Dixit, V. H. Moll, Ch. Vignat, The Zagier modification of Bernoulli numbers and a polynomial extension. Part I, arXiv:1209.4110v1 [math.NT], Sep 18, 2012. MAPLE A216912 := n -> denom(add(binomial(2*n+r, 2*r)*bernoulli(r)/(2*n+r), r=0..2*n))/4; seq(A216912(i), i=1..38); # Peter Luschny, Sep 20 2012 MATHEMATICA a[n_] := Denominator[Sum[Binomial[2n+r, 2r]*(BernoulliB[r]/(2n+r)), {r, 0, 2n}]]/4; Array[a, 38] (* Jean-François Alcover, Jul 14 2018, after Peter Luschny *) PROG (PARI) a(n) = denominator(sum(k=0, 2*n, binomial(2*n+k, 2*k)*bernfrac(k)/(2*n+k)))/4; \\ Michel Marcus, Jul 14 2018 CROSSREFS Cf. A216922, A216923. Sequence in context: A267903 A330825 A280039 * A175671 A222741 A069257 Adjacent sequences:  A216909 A216910 A216911 * A216913 A216914 A216915 KEYWORD nonn AUTHOR Jonathan Vos Post, Sep 20 2012 EXTENSIONS a(16)-a(38) from Peter Luschny, Sep 20 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 28 02:22 EST 2020. Contains 338699 sequences. (Running on oeis4.)