%I #12 Jul 22 2017 08:52:47
%S 12884901893,21474836483,201863462873,227633266643,236223201233,
%T 296352743363,347892350903,408021893033,493921238933,528280977293,
%U 545460846473,614180323193,622770257783,631360192373,717259538273,751619276633,794568949583,811748818763
%N Prime numbers that are congruent to 8 mod (3*5*17*257*65537).
%C Note that 3, 5, 17, 257, and 65537 are Fermat primes (A019434).
%H Shalom Eliahou and Jorge Ramírez Alfonsín, <a href="http://www.math.univ-montp2.fr/~ramirez/semigroups.pdf">Two-generator numerical semigroups and Fermat and Mersenne numbers</a>, SIAM J. Discrete Math., 25(2), 2011, 622-630.
%o (PARI) p5fm8(k) = {pf5 = 3*5*17*257*65537;for (i=1, k,p = pf5*i + 8;if (isprime(p), print1 (p, ", ")););}
%K nonn
%O 1,1
%A _Michel Marcus_, Sep 18 2012