login
A216844
4k^2-8k+2 interleaved with 4k^2-4k+2 for k>=0.
2
2, 2, -2, 2, 2, 10, 14, 26, 34, 50, 62, 82, 98, 122, 142, 170, 194, 226, 254, 290, 322, 362, 398, 442, 482, 530, 574, 626, 674, 730, 782, 842, 898, 962, 1022, 1090, 1154, 1226, 1294, 1370, 1442, 1522, 1598, 1682, 1762, 1850, 1934, 2026, 2114, 2210, 2302, 2402
OFFSET
0,1
COMMENTS
The sequence is present as a family of single interleaved sequence of which there are many which are separated or factored out to give individual sequences. The larger sequence produces two smaller interleaved sequences where one of them has the formulas above and the other interleaved sequence has the formulas (4n^2 + 4n -1) and (4n^2+1). The latter interleaved sequence is A214345.
LINKS
Eddie Gutierrez New Interleaved Sequences Part A on oddwheel.com, Section B1 Line No. 21 (square_sequencesI.html) Part A
FORMULA
G.f.: 2*(1-x-3*x^2+5*x^3)/((1+x)*(1-x)^3). [Bruno Berselli, Sep 30 2012]
a(n) = (1/2)*(2*n*(n-4)-3*(-1)^n+7). [Bruno Berselli, Sep 30 2012]
a(n) = 2*A178218(n-3) with A178218(-3)=1, A178218(-2)=1, A178218(-1)=-1, A178218(0)=1. [Bruno Berselli, Oct 01 2012]
MATHEMATICA
Flatten[Table[{4 n^2 - 8 n + 2, 4 n^2 - 4 n + 2}, {n, 0, 25}]] (* Bruno Berselli, Sep 30 2012 *)
LinearRecurrence[{2, 0, -2, 1}, {2, 2, -2, 2}, 60] (* Harvey P. Dale, Jul 18 2020 *)
PROG
(Magma) &cat[[4*k^2-8*k+2, 4*k^2-4*k+2]: k in [0..25]]; // Bruno Berselli, Sep 30 2012
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Eddie Gutierrez, Sep 17 2012
EXTENSIONS
Definition rewritten by Bruno Berselli, Oct 25 2012
STATUS
approved