login
Fibonacci + Goldbach (dual sequence to A216275). a(1)=5, a(2)=7 and for n>=3, a(n) = g(a(n-1) + a(n-2)), where for m>=3, g(2*m) is the maximal prime p < 2*m such that 2*m - p is prime.
4

%I #22 Mar 27 2013 14:42:18

%S 5,7,7,11,13,19,29,43,67,107,167,271,433,701,1129,1823,2939,4759,7691,

%T 12437,20123,32537,52631,85121,137723,222841,360551,583351,943871,

%U 1527203,2471071,3998263,6469303,10467547,16936753,27404297,44341027,71745313,116086303

%N Fibonacci + Goldbach (dual sequence to A216275). a(1)=5, a(2)=7 and for n>=3, a(n) = g(a(n-1) + a(n-2)), where for m>=3, g(2*m) is the maximal prime p < 2*m such that 2*m - p is prime.

%C Conjecture. lim a(n+1)/a(n)=phi as n goes to infinity (phi=golden ratio).

%H Peter J. C. Moses, <a href="/A216835/b216835.txt">Table of n, a(n) for n = 1..1000</a>

%F a(n) = g(A216275(n+2)).

%t a[1] = 5; a[2] = 7; g[n_] := Module[{tmp,k=1}, While[!PrimeQ[n-(tmp=NextPrime[n,-k])], k++]; tmp]; a[n_] := a[n] = g[a[n-1] + a[n-2]]; Table[a[n], {n,1,100}]

%Y Cf. A000045, A002375, A025019, A216275.

%K nonn

%O 1,1

%A _Vladimir Shevelev_, Mar 16 2013