%I
%S 11,0,0,1,6,0,0,0,0,18,5,0,0,0,1,93,18,9,0,0,0,0,600,84,28,7,0,0,0,1,
%T 4320,512,192,0,16,0,0,0,0,35168,4122,810,156,54,9,0,0,0,1,321630,
%U 34000,5625,1400,200,0,25,0,0,0,0
%N Triangle read by rows: number of circular permutations of [1..n] with k modular progressions of rise 1, distance 2 and length 3 (n >= 3, 0 <= k <= n).
%D Wayne M. Dymacek, Isaac Lambert and Kyle Parsons, Arithmetic Progressions in Permutations, http://math.ku.edu/~ilambert/CN.pdf, 2012.
%e Triangle begins:
%e 1 0 0 1
%e 6 0 0 0 0
%e 18 5 0 0 0 1
%e 93 18 9 0 0 0 0
%e 600 84 28 7 0 0 0 1
%e 4320 512 192 0 16 0 0 0 0
%e 35168 4122 810 156 54 9 0 0 0 1
%e 321630 34000 5625 1400 200 0 25 0 0 0 0
%e ...
%Y Cf. A216716, A216718, A216719, A216722, A216724, A216727.
%K nonn,tabf
%O 3,1
%A _N. J. A. Sloane_, Sep 15 2012
