login
A216709
a(n) is the integer closest to Riemann's prime counting function R(n*10^6) minus the prime counting function pi(n*10^6).
2
29, -9, 0, 33, -64, 24, -38, -6, -53, 88, -3, -46, -51, 25, 34, 1, -18, -117, -46, -36, 18, -77, 27, 39, 3, 33, -6, 2, 7, -41, -139, -61, -104, -108, 106, 135, 198, 190, 3, -84, -102, 38, 50, 52, 55, -131, -134, -16, 99, -67, -53, -90, -49, -9, 127, 72, -13, 50, -17, 39, -85, 114
OFFSET
1,1
COMMENTS
H. M. Edwards gives a(1)=30 instead of 29; he may have considered 1 a prime.
REFERENCES
H. M. Edwards, Riemann's Zeta Function, Dover Publications, New York, 1974 (ISBN 978-0-486-41740-0), page 35.
LINKS
Eric Weisstein's World of Mathematics, Riemann Prime Counting Function.
MATHEMATICA
Table[ Round[ RiemannR[n*10^6] - PrimePi[n*10^6]], {n, 1, 40}]
CROSSREFS
Cf. A057794.
Sequence in context: A040819 A128370 A040818 * A040817 A309007 A070714
KEYWORD
sign
AUTHOR
EXTENSIONS
Corrected and extended by Vincenzo Librandi, Jul 19 2013
STATUS
approved