This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216708 Number of compositions (ordered partitions) of n into 2 or more distinct nonnegative parts. 1
 0, 2, 2, 10, 10, 18, 48, 56, 86, 124, 298, 336, 540, 722, 1070, 2122, 2614, 3810, 5316, 7496, 9986, 18940, 22558, 33336, 44568, 63074, 82034, 114754, 187642, 234690, 328536, 441872, 602006, 794020, 1072546, 1389408, 2207532, 2706266, 3752462, 4900474, 6681022, 8574906 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If permutations are considered equivalent then a(n)=A087135(n)=2*A000009(n) for n>0. All terms are even. - Alois P. Heinz, Aug 18 2018 LINKS Alois P. Heinz, Table of n, a(n) for n = 0..5000 César Eliud Lozada, Illustration for terms up to n=9 FORMULA From Joerg Arndt, Sep 17 2012: (Start) G.f. sum(k>=0, (k+1)!*x^((k^2+k)/2) / prod(j=1..k+1, 1-x^j)) - 1/(1-x); explanation: the g.f. for partitions into at least two positive parts (A111133) is sum(k>=0, x^((k^2+k)/2) / prod(j=1..k, 1-x^j)) - 1/(1-x) (i.e., the g.f. of A000009 minus the g.f. 1/(1-x) for the constant sequence a(n)=1 that counts the single partition n = [n]); the factor (k+1)! in the g.f. of this function provides for the permutations of the parts, including a zero. (End) EXAMPLE a(2)=2 because 2 = 0+2 = 2+0 (2 ways) a(3)=10 because 3 = 0+3 = 1+2 = 2+1 = 3+0 = 0+1+2 = 0+2+1 = 1+0+2 = 1+2+0 = 2+0+1 = 2+1+0 (10 ways) MAPLE b:= proc(n, i, p) option remember; (m-> `if`(m b(n\$2, 0): seq(a(n), n=0..42);  # Alois P. Heinz, Aug 18 2018 PROG (PARI) N=66;  x='x+O('x^N); gf=sum(k=0, N, (k+1)!*x^((k^2+k)/2) / prod(j=1, k+1, 1-x^j)) - 1/(1-x); v=Vec(gf); vector(#v+1, n, if(n==1, 0, v[n-1])) /* Joerg Arndt, Sep 17 2012 */ CROSSREFS Cf. A216695, A087135, A000009, A032020. Sequence in context: A019241 A168295 A249152 * A032005 A147801 A263053 Adjacent sequences:  A216705 A216706 A216707 * A216709 A216710 A216711 KEYWORD nonn AUTHOR César Eliud Lozada, Sep 16 2012 EXTENSIONS More terms, Joerg Arndt, Sep 17 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 15 17:43 EDT 2019. Contains 324142 sequences. (Running on oeis4.)