OFFSET
1,1
LINKS
Alois P. Heinz, Antidiagonals n = 1..141, flattened
EXAMPLE
A(1,1) = 10: 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.
A(1,2) = 4: 0, 1, 4, 9.
A(2,2) = 6: 16, 25, 36, 49, 64, 81.
A(3,3) = 5: 125, 216, 343, 512, 729.
A(4,4) = 4: 1296, 2401, 4096, 6561.
A(5,5) = 3: 16807, 32768, 59049.
A(6,6) = 3: 117649, 262144, 531441.
Square array A(n,k) begins:
:n\k| 1: 2: 3: 4: 5: 6: 7: 8
+---+--------------------------------------------
: 1 | 10, 4, 3, 2, 2, 2, 2, 2
: 2 | 90, 6, 2, 2, 1, 1, 0, 0
: 3 | 900, 22, 5, 2, 1, 1, 1, 1
: 4 | 9000, 68, 12, 4, 3, 1, 1, 1
: 5 | 90000, 217, 25, 8, 3, 2, 2, 1
: 6 | 900000, 683, 53, 14, 6, 3, 2, 1
: 7 | 9000000, 2163, 116, 25, 10, 5, 2, 2
: 8 | 90000000, 6837, 249, 43, 14, 7, 4, 2
MAPLE
r:= proc(n, k) local b; b:= iroot(n, k); b+`if`(b^k<n, 1, 0) end:
A:= (n, k)-> r(10^n, k) -r(10^(n-1), k) +`if`(n=1, 1, 0):
seq(seq(A(n, 1+d-n), n=1..d), d=1..10);
CROSSREFS
KEYWORD
AUTHOR
Alois P. Heinz, Sep 12 2012
STATUS
approved