login
A216624
Square array read by antidiagonals, T(n,k) = sum_{c|n,d|k} gcd(c,d) for n>=1, k>=1.
13
1, 2, 2, 2, 5, 2, 3, 4, 4, 3, 2, 8, 6, 8, 2, 4, 4, 6, 6, 4, 4, 2, 10, 4, 15, 4, 10, 2, 4, 4, 12, 6, 6, 12, 4, 4, 3, 11, 4, 16, 8, 16, 4, 11, 3, 4, 6, 8, 6, 8, 8, 6, 8, 6, 4, 2, 10, 10, 22, 4, 30, 4, 22, 10, 10, 2, 6, 4, 8, 9, 8, 8, 8, 8, 9, 8, 4, 6
OFFSET
1,2
COMMENTS
T(n,k) = number of subgroups of C_n X C_k. [Hampjes et al.] - N. J. A. Sloane, Feb 02 2013
LINKS
M. Hampejs, N. Holighaus, L. Toth and C. Wiesmeyr, On the subgroups of the group Z_m X Z_n, 2012. - From N. J. A. Sloane, Feb 02 2013
FORMULA
T(n,n) = A060724(n) = sum_{d|n} d*tau((n/d)^2).
T(n,1) = T(1,n) = A000005(n) = tau(n).
T(n,2) = T(2,n) = A060710(n) = sum_{d|n} (3-[d is odd]) (Iverson bracket).
T(n+1,n) = A092517(n) = tau(n+1)*tau(n).
T(prime(n),1) = A007395(n) = 2.
T(prime(n),prime(n)) = A113935(n) = prime(n)+3.
EXAMPLE
[----1---2---3---4---5---6---7---8---9--10--11--12]
[ 1] 1, 2, 2, 3, 2, 4, 2, 4, 3, 4, 2, 6
[ 2] 2, 5, 4, 8, 4, 10, 4, 11, 6, 10, 4, 16
[ 3] 2, 4, 6, 6, 4, 12, 4, 8, 10, 8, 4, 18
[ 4] 3, 8, 6, 15, 6, 16, 6, 22, 9, 16, 6, 30
[ 5] 2, 4, 4, 6, 8, 8, 4, 8, 6, 16, 4, 12
[ 6] 4, 10, 12, 16, 8, 30, 8, 22, 20, 20, 8, 48
[ 7] 2, 4, 4, 6, 4, 8, 10, 8, 6, 8, 4, 12
[ 8] 4, 11, 8, 22, 8, 22, 8, 37, 12, 22, 8, 44
[ 9] 3, 6, 10, 9, 6, 20, 6, 12, 23, 12, 6, 30
[10] 4, 10, 8, 16, 16, 20, 8, 22, 12, 40, 8, 32
[11] 2, 4, 4, 6, 4, 8, 4, 8, 6, 8, 14, 12
[12] 6, 16, 18, 30, 12, 48, 12, 44, 30, 32, 12, 90
.
Displayed as a triangular array:
1,
2, 2,
2, 5, 2,
3, 4, 4, 3,
2, 8, 6, 8, 2,
4, 4, 6, 6, 4, 4,
2, 10, 4, 15, 4, 10, 2,
4, 4, 12, 6, 6, 12, 4, 4,
3, 11, 4, 16, 8, 16, 4, 11, 3,
MAPLE
with(numtheory):
T:= (n, k)-> add(add(igcd(c, d), c=divisors(n)), d=divisors(k)):
seq(seq(T(n, 1+d-n), n=1..d), d=1..14); # Alois P. Heinz, Sep 12 2012
T:=proc(m, n) local d; add( d*tau(m*n/d^2), d in divisors(gcd(m, n))); end; # N. J. A. Sloane, Feb 02 2013
MATHEMATICA
t[n_, k_] := Sum[Sum[GCD[c, d], {c, Divisors[n]}], {d, Divisors[k]}]; Table[t[n-k+1, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, May 21 2013 *)
PROG
(Sage)
def A216624(n, k) :
cp = cartesian_product([divisors(n), divisors(k)])
return reduce(lambda x, y: x+y, map(gcd, cp))
for n in (1..12): [A216624(n, k) for k in (1..12)]
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, Sep 12 2012
STATUS
approved