login
A216607
The sequence used to represent partition binary diagram as an array.
4
0, 0, 1, 0, 1, 0, 2, 1, 0, 2, 1, 0, 3, 2, 1, 0, 3, 2, 1, 0, 4, 3, 2, 1, 0, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3, 2, 1, 0, 8, 7, 6, 5, 4, 3
OFFSET
1,7
COMMENTS
This sequence differs from A025672 first at index n=110.
FORMULA
a(n) = floor((1/4)*ceiling(sqrt(4*n))^2) - n.
a(n^2) = a(n^2+n) = 0.
From Szymon Lukaszyk, Oct 27 2023: (Start)
a(n) = (-n) mod round(sqrt(n)).
a(n) = (A167268(n) - 2)/4. (End)
MAPLE
seq(floor((1/4)*ceil(sqrt(4*n))^2)-n, n=1..50)
PROG
(PARI) A216607(n)=floor((1/4)*ceil(sqrt(4*n))^2)-n;
CROSSREFS
Sequence in context: A128313 A283486 A330759 * A025672 A025665 A357022
KEYWORD
nonn,easy
AUTHOR
Mircea Merca, Sep 10 2012
STATUS
approved