%I #33 Jul 13 2018 04:04:32
%S 0,108,27018
%N Numbers m such that 8^m + m^8 + 1 is prime.
%C Next term > 2*10^4.
%C a(4) > 10^5. - _Robert Price_, Oct 08 2015
%e 8^0 + 0^8 + 1 = 2, which is prime, so 0 is in the sequence.
%t Select[Range[0, 10000], PrimeQ[8^# + #^8 + 1] &]
%o (PARI) is(n)=ispseudoprime(8^n+n^8+1) \\ _Charles R Greathouse IV_, Jun 13 2017
%Y Cf. Numbers m such that k^m + m^k + 1 is prime: A100357 (k=2), A215441 (k=3), A216423 (k=4), A215442 (k=5), A243934 (k=6), A215444 (k=7), this sequence (k=8), A216618 (k=10), A216375 (k=11), A216421 (k=13).
%Y Cf. Numbers m such that k^m + m^k - 1 is prime: A215439 (k=2), A215440 (k=3), A216424 (k=4), A215443 (k=5), A216425 (k=6), A215445 (k=7), A216591 (k=8), A216619 (k=10), A215446 (k=11), A216420 (k=13), A216422 (k=19).
%Y Cf. Primes of form k^m + m^k + 1: A035325 (k=2), A215436 (k=3), A215438 (k=5).
%Y Cf. Primes of form k^m + m^k - 1: A215434 (k=2), A215435 (k=3), A215437 (k=5).
%K nonn,hard,more,bref
%O 1,2
%A _Vincenzo Librandi_, Sep 09 2012
%E a(3) from _Robert Price_, Oct 08 2015