login
A216484
Primes p such that x^36 = 2 has no solution mod p.
1
3, 5, 7, 11, 13, 17, 19, 29, 37, 41, 43, 53, 59, 61, 67, 73, 79, 83, 97, 101, 103, 107, 109, 131, 137, 139, 149, 151, 157, 163, 173, 179, 181, 193, 197, 199, 211, 227, 229, 241, 251, 269, 271, 277, 283, 293, 307, 313, 317, 331, 337, 347, 349, 367, 373, 379, 389
OFFSET
1,1
COMMENTS
Complement of A049568 relative to A000040.
Different from A059264: 919, 1423, 1999, ... (see A059668) are terms of this sequence, but not of A059264. [Joerg Arndt, Sep 14 2012]
Coincides for the first 416 terms with the sequence of primes p such that x^108 = 2 has no solution mod p (first divergence is at 3947). [Bruno Berselli, Sep 14 2012]
LINKS
MATHEMATICA
ok[p_] := Reduce[Mod[x^36 - 2, p] == 0, x, Integers] == False; Select[Prime[Range[500]], ok]
Select[Prime[Range[PrimePi[400]]], ! MemberQ[PowerMod[Range[#], 36, #], Mod[2, #]] &] (* Bruno Berselli, Sep 14 2012 *)
PROG
(Magma) [p: p in PrimesUpTo(400) | forall{x: x in ResidueClassRing(p) | x^36 ne 2}];
CROSSREFS
Cf. A059668 (primes p such that x^36 = 2 has no solution mod p, but x^12 = 2 has a solution mod p).
Sequence in context: A059362 A212376 A059264 * A179479 A038604 A155026
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Sep 14 2012
STATUS
approved