The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216483 a(n) = Sum_{k=0..n} binomial(n,k)^3 * 4^k. 6

%I

%S 1,5,49,605,8065,113525,1656145,24774125,377601025,5839329125,

%T 91349718769,1442580779645,22959923825281,367847984671445,

%U 5926784048373265,95960317086368525,1560335109283897345,25466972987548413125,417048643127042376625,6850021673230814868125

%N a(n) = Sum_{k=0..n} binomial(n,k)^3 * 4^k.

%C Diagonal of rational function 1/(1 + y + z + x*y + y*z + 4*x*z + 5*x*y*z). - _Gheorghe Coserea_, Jul 01 2018

%C Diagonal of rational function 1 / ((1-x)*(1-y)*(1-z) - 4*x*y*z). - _Seiichi Manyama_, Jul 11 2020

%H Vincenzo Librandi, <a href="/A216483/b216483.txt">Table of n, a(n) for n = 0..200</a>

%H V. Kotesovec, <a href="http://www.kotesovec.cz/math_articles/kotesovec_binomial_asymptotics.pdf">Asymptotic of a sums of powers of binomial coefficients * x^k</a>, 2012.

%F Recurrence: (n+3)^2*(3*n+4)*a(n+3) = 5*(9*n^3+57*n^2+116*n+74)*a(n+2) + (99*n^3+528*n^2+938*n+555)*a(n+1) + 125*(3*n+7)*(n+1)^2*a(n).

%F a(n) ~ (1+2^(2/3))^2/(2*2^(2/3)*sqrt(3)*Pi) * (3*4^(2/3)+3*4^(1/3)+5)^n/n. - _Vaclav Kotesovec_, Sep 19 2012

%F G.f.: hypergeom([1/3, 2/3],[1],108*x^2/(1-5*x)^3)/(1-5*x). - _Mark van Hoeij_, May 02 2013

%F a(n) = hypergeom([-n,-n,-n],[1,1],-4). - _Peter Luschny_, Sep 23 2014

%F G.f. y=A(x) satisfies: 0 = x*(5*x + 2)*(125*x^3 + 33*x^2 + 15*x - 1)*y'' + (1875*x^4 + 1330*x^3 + 273*x^2 + 60*x - 2)*y' + (625*x^3 + 495*x^2 + 42*x + 10)*y. - _Gheorghe Coserea_, Jul 01 2018

%t Table[Sum[Binomial[n,k]^3*4^k,{k,0,n}],{n,0,20}]

%o (Sage)

%o A216483 = lambda n: hypergeometric([-n,-n,-n], [1,1], -4)

%o [Integer(A216483(n).n(100)) for n in (0..19)] # _Peter Luschny_, Sep 23 2014

%o (PARI) a(n) = sum(k=0, n, binomial(n,k)^3 * 4^k); \\ _Gheorghe Coserea_, Jul 01 2018

%Y Cf. A206178, A206180, A216636.

%K nonn

%O 0,2

%A _Vaclav Kotesovec_, Sep 11 2012

%E Minor edits by _Vaclav Kotesovec_, Mar 31 2014

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 27 06:46 EST 2020. Contains 338678 sequences. (Running on oeis4.)