%I #22 Jun 03 2018 08:00:49
%S 0,2,4,7,8,12,15,16,21,24,28,31,32,38,42,46,49,53,56,60,63,64,71,75,
%T 79,82,87,90,94,97,102,106,110,113,117,120,124,127,128,136,143,147,
%U 152,158,162,168,174,178,183,186,190,193,199,203,207,210,215,218,222
%N a(0)=0; thereafter a(n+1) = a(n) + 1 + number of 0's in binary representation of a(n), counted with A023416.
%C The difference from A233271 stems from the fact that it uses A080791 to count the 0-bits in binary expansion of n, while this sequence uses A023416, which results a slightly different start for the iteration.
%H Harvey P. Dale, <a href="/A216431/b216431.txt">Table of n, a(n) for n = 0..1000</a>
%F If n<2, a(n) = 2n, otherwise, a(n) = A233272(a(n-1)). - _Antti Karttunen_, Dec 12 2013
%t NestList[#+1+DigitCount[#,2,0]&,0,60] (* _Harvey P. Dale_, Sep 25 2013 *)
%o (Python)
%o a = 0
%o for n in range(100):
%o print a,
%o ta = a
%o c0 = (a==0)
%o while ta>0:
%o c0 += 1-(ta&1)
%o ta >>= 1
%o a += 1 + c0
%o (Scheme, with memoizing definec-macro from Antti Karttunen's IntSeq-library)
%o (definec (A216431 n) (if (< n 2) (+ n n) (A233272 (A216431 (- n 1)))))
%o ;; _Antti Karttunen_, Dec 12 2013
%Y Differs from A233271 only in that this jumps directly from 0 to 2 in the beginning.
%Y Cf. A023416, A010062, A214913, A233271, A233272.
%K nonn,base
%O 0,2
%A _Alex Ratushnyak_, Sep 08 2012
%E Name edited by _Antti Karttunen_, Dec 12 2013