login
Numbers which start a run of nine consecutive zero-digit-free decimal integers, each of which is divisible by the sum of its digits
1

%I #49 Apr 03 2016 03:30:53

%S 1,142813628717821,253323932621811,1234954171531131,1713763544613181,

%T 3713154346661821,5953112416611411,8711631351783421,11853531183574141,

%U 12191214257422251,17137635446131261,19941476493818971,21342541323383331,25628491758925521,28665872459864731

%N Numbers which start a run of nine consecutive zero-digit-free decimal integers, each of which is divisible by the sum of its digits

%C Each term of the sequence ends with the digit 1.

%C No run of ten consecutive zero-digit-free decimal integers is possible.

%e The numbers from a(2)=142813628717821 to 142813628717829 are each divisible by their digit sums, which are 61 to 69 respectively.

%o (PARI) \\ Algorithm from Jack Brennen

%o list(lim)=my(v=List([1]),m); forstep(d=11, (40320*lim)^(1/9), 10, m=lcm(vector(9,k,d+k-1)); forstep(x=m+d, lim, m, if(sumdigits(x)==d && vecsort(digits(x))[1], listput(v,x)))); vecsort(Vec(v)) \\ _Charles R Greathouse IV_, Oct 16 2012

%Y Subsequence of A217973 and of A017281.

%K nonn,base

%O 1,2

%A _Jack Brennen_, Oct 16 2012