OFFSET
1,2
EXAMPLE
For n=4 the A000081(4) = 4 functions and their 4th derivatives at x=1 are x^(x^3)->156, x^(x^x*x)->100, x^(x^(x^2))->80, x^(x^(x^x))->56 => a(n) = 156+100+80+56 = 392.
MAPLE
F:= proc(n) F(n):= `if`(n=1, [x], map(h->x^h, g(n-1, n-1))) end:
g:= proc(n, i) option remember; `if`(i=1, [x^n], [seq(seq(seq(
mul(F(i)[w[t]-t+1], t=1..j)*v, w=combinat[choose](
[$1..nops(F(i))+j-1], j)), v=g(n-i*j, i-1)), j=0..n/i)])
end:
a:= n-> add(n!*coeff(series(subs(x=x+1, f), x, n+1), x, n), f=F(n)):
seq(a(n), n=1..12);
MATHEMATICA
F[n_] := If[n == 1, {x}, x^#& /@ g[n - 1, n - 1]];
g[n_, i_] := g[n, i] = If[i == 1, {x^n}, Flatten@Table[Table[Table[ Product[F[i][[w[[t]] - t + 1]], {t, 1, j}]*v, {w, Subsets[Range[Length[ F[i]] + j - 1], {j}]}], {v, g[n - i*j, i - 1]}], {j, 0, n/i}]];
a[n_] := a[n] = Sum[n!*SeriesCoefficient[f /. x -> x + 1, {x, 0, n}], {f, F[n]}];
Table[Print[n, " ", a[n]]; a[n], {n, 1, 12}] (* Jean-François Alcover, Nov 14 2023, after Alois P. Heinz *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Alois P. Heinz, Sep 04 2012
EXTENSIONS
a(16) from Alois P. Heinz, May 09 2016
STATUS
approved