login
A216255
Triangle read by rows: T(n,k) is the number of labeled rooted trees of height at most 2 that have exactly k nodes at a distance 2 from the root; n>=1, 0<=k<=n-1.
1
1, 2, 0, 3, 6, 0, 4, 24, 12, 0, 5, 60, 120, 20, 0, 6, 120, 540, 480, 30, 0, 7, 210, 1680, 3780, 1680, 42, 0, 8, 336, 4200, 17920, 22680, 5376, 56, 0, 9, 504, 9072, 63000, 161280, 122472, 16128, 72, 0, 10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0
OFFSET
1,2
COMMENTS
Row sums = A052512.
Column k=1: A007531.
LINKS
FORMULA
E.g.f.: x*exp(x*exp(y*x)).
T(n,k) = n*C(n-1,k)*(n-k-1)^k. - Alois P. Heinz, Mar 15 2013
EXAMPLE
1;
2, 0;
3, 6, 0;
4, 24, 12, 0;
5, 60, 120, 20, 0;
6, 120, 540, 480, 30, 0;
7, 210, 1680, 3780, 1680, 42, 0;
8, 336, 4200, 17920, 22680, 5376, 56, 0;
9, 504, 9072, 63000, 161280, 122472, 16128, 72, 0;
10, 720, 17640, 181440, 787500, 1290240, 612360, 46080, 90, 0;
T(4,1) = 24 because there is only one unlabeled tree on 4 nodes with exactly 1 node at distance two from the root. It has 24 labelings.
.......o......
....../.\.....
.....o...o....
..../.........
...o..........
MAPLE
T:= (n, k)-> n*binomial(n-1, k)*(n-k-1)^k:
seq(seq(T(n, k), k=0..n-1), n=1..12); # Alois P. Heinz, Mar 15 2013
MATHEMATICA
nn=10; a=NestList[x Exp[#]&, y x, nn]; f[list_]:=Select[list, #>0&]; Map[f, Range[0, nn]!CoefficientList[Series[a[[3]], {x, 0, nn}], {x, y}]]//Grid
CROSSREFS
Sequence in context: A155800 A276658 A079510 * A362788 A262256 A011120
KEYWORD
nonn,tabl
AUTHOR
Geoffrey Critzer, Mar 15 2013
STATUS
approved