OFFSET
0,4
COMMENTS
Compare to the LambertW identity:
Sum_{n>=0} n^n * x^n * G(x)^n/n! * exp(-n*x*G(x)) = 1/(1 - x*G(x)).
EXAMPLE
G.f.: A(x) = 1 + x + x^2 + 2*x^3 + 15*x^4 + 77*x^5 + 354*x^6 + 2509*x^7 +...
where
A(x) = 1 + x*A(x^2)*exp(-x*A(x^2)) + 2^2*x^2*A(2^2*x^2)^2/2!*exp(-2*x*A(2^2*x^2)) + 3^3*x^3*A(3^2*x^2)^3/3!*exp(-3*x*A(3^2*x^2)) + 4^4*x^4*A(4^2*x^2)^4/4!*exp(-4*x*A(4^2*x^2)) + 5^5*x^5*A(5^2*x^2)^5/5!*exp(-5*x*A(5^2*x^2)) +...
simplifies to a power series in x with integer coefficients.
PROG
(PARI) {a(n)=local(A=1+x); for(i=1, n, A=sum(k=0, n, k^k*x^k*subst(A, x, k^2*x^2)^k/k!*exp(-k*x*subst(A, x, k^2*x^2)+x*O(x^n)))); polcoeff(A, n)}
for(n=0, 30, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Mar 14 2013
STATUS
approved