The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation. Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A216244 Numbers a(n) such that a(n)^2 + prime(n)^2 = m^2  for some integer m. 4
 4, 12, 24, 60, 84, 144, 180, 264, 420, 480, 684, 840, 924, 1104, 1404, 1740, 1860, 2244, 2520, 2664, 3120, 3444, 3960, 4704, 5100, 5304, 5724, 5940, 6384, 8064, 8580, 9384, 9660, 11100, 11400, 12324, 13284, 13944, 14964, 16020, 16380, 18240, 18624, 19404, 19800 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,1 COMMENTS Subsequence of A055523 restricted to the case of the other (shorter) leg of the triangle equal to a prime. There is only one value of a(n) for each prime(n). (This is not necessarily true if the shorter leg is not a prime.) Note that a(1) is nonexistent since there is no solution with prime = 2. All terms are divisible by 4. The values of m (the length of the hypotenuse) always equals a(n) + 1. a(n) =  (prime(n)^2 - 1)/2 for all n > 1. This follows algebraically given m = a(n) + 1 (or vice versa). The same two relationships apply when the shorter leg is an odd nonprime, but for only those results corresponding to the longest possible leg of the triangle. LINKS Vincenzo Librandi, Table of n, a(n) for n = 2..4000 FORMULA a(n) = (prime(n)^2 -1)/2 for n > 1. a(n) = 4*A061066(n). a(n) = A084921(n) for n > 1. a(n) = (prime(n)-1)*(prime(n)+1)/2 = lcm(prime(n)+1, prime(n)-1) for n > 1 because one of prime(n)+1 or prime(n)-1 is even and the other is divisible by 4. Say prime(n)-1 is divisible by 4; then (prime(n)+1)/2 and (prime(n)-1)/4 must be coprime. - Frank M Jackson, Dec 11 2018 EXAMPLE 24^2 + 7^2 = 625 = 25^2 = (24 +1)^2  and a(4) = (prime(4)^2 -1)/2 = (49 - 1)/2 = 24. MAPLE A216244:=n->(ithprime(n)^2-1)/2: seq(A216244(n), n=2..100); # Wesley Ivan Hurt, May 03 2017 MATHEMATICA Table[(Prime[n]^2 - 1)/2, {n, 2, 100}] (* Vincenzo Librandi, Jun 15 2014 *) PROG (PARI) vector(50, n, n++; (prime(n)^2 -1)/2) \\ G. C. Greubel, Dec 14 2018 (MAGMA) [(NthPrime(n)^2 - 1)/2: n in [2..50]]; // G. C. Greubel, Dec 14 2018 (Sage) [(nth_prime(n)^2 -1)/2 for n in (2..50)] # G. C. Greubel, Dec 14 2018 CROSSREFS Subset of A055523. Equals 4*A061066. Equals A084921 excluding its first term. Sequence in context: A136486 A003203 A051193 * A215223 A318610 A296358 Adjacent sequences:  A216241 A216242 A216243 * A216245 A216246 A216247 KEYWORD nonn,easy AUTHOR Richard R. Forberg, May 28 2013 EXTENSIONS More terms from Vincenzo Librandi, Jun 15 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified January 23 16:36 EST 2020. Contains 331172 sequences. (Running on oeis4.)