login
A216236
Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=4 or if k-n>=5, T(3,0) = T(2,0) = T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = T(0,4) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
4
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 4, 0, 0, 5, 10, 10, 4, 0, 0, 5, 15, 20, 14, 0, 0, 0, 0, 20, 35, 34, 14, 0, 0, 0, 0, 20, 55, 69, 48, 0, 0, 0, 0, 0, 0, 75, 124, 117, 48, 0, 0, 0, 0, 0, 0, 75, 199, 241, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 440, 406, 165, 0, 0, 0, 0, 0, 0, 0, 0, 274, 714, 846, 571, 0, 0, 0, 0, 0
OFFSET
0,5
COMMENTS
Arithmetic hexagon of E. Lucas.
REFERENCES
E. Lucas, Théorie des nombres, Albert Blanchard, Paris, 1958, Tome 1, p. 89
LINKS
E. Lucas, Théorie des nombres, Tome 1, Jacques Gabay, Paris, 1991, p.89
FORMULA
T(n+3,n) = T(n+2,n) = A094827(n).
T(n+1,n) = A094832(n).
T(n,n) = A094854(n).
T(n,n+1) = A094855(n).
T(n,n+2) = A094833(n+1).
T(n,n+3) = T(n,n+4) = A094828(n).
Sum( T(n-k,k), 0<=k<=n ) = A217733(n). - Philippe Deléham, Mar 22 2013
EXAMPLE
Square array begins:
1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ...
1, 2, 3, 4, 5, 5, 0, 0, 0, 0, 0, ...
1, 3, 6, 10, 15, 20, 20, 0, 0, 0, ...
1, 4, 10, 20, 35, 55, 75, 75, 0, 0, 0, ...
0, 4, 14, 34, 69, 124, 199, 274, 274, 0, 0, ...
0, 0, 14, 48, 117, 241, 440, 714, 988, 988, 0, ...
...
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Mar 14 2013
STATUS
approved