%I #9 Mar 14 2013 20:50:40
%S 1,1,0,1,1,0,1,2,0,0,0,3,2,0,0,0,3,5,0,0,0,0,0,8,5,0,0,0,0,0,8,13,0,0,
%T 0,0,0,0,0,21,13,0,0,0,0,0,0,0,21,34,0,0,0,0,0,0,0,0,0,55,34,0,0,0,0,0
%N Square array T, read by antidiagonals: T(n,k) = 0 if n-k>=1 or if k-n>=4, T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n-1,k) + T(n,k-1).
%F T(n,n) = A000045(2*n-1) = A001519(n).
%F T(n,n+1) = A000045(2*n+1) = A001519(n+1).
%F T(n,n+2) = T(n,n+3) = A000045(2*n+2) = A001906(n+1).
%F Sum_{k, 0<=k<=n} T(n-k,k) = A000045(n+1).
%F Sum_{k, k>=0} T(n,k) = A000285(2*n+1).
%F Sum_{n, n>=0} T(n,k) = A000285(2*k-2), k>=2.
%e Square array begins:
%e 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, ... row n=0
%e 0, 1, 2, 3, 3, 0, 0, 0, 0, 0, ... row n=1
%e 0, 0, 2, 5, 8, 8, 0, 0, 0, 0, ... row n=2
%e 0, 0, 0, 5, 13, 21, 21, 0, 0, 0, ... row n=3
%e 0, 0, 0, 0, 13, 34, 55, 55, 0, 0, ... row n=4
%e 0, 0, 0, 0, 0, 34, 89, 144, 144, 0, ... row n=5
%e ...
%Y Cf. A000045 (Fibonacci numbers), A000285, A001519, A001906, A068914
%Y Cf. Similar sequences: A216201, A216210, A216216, A216218, A216219, A216220, A216228, A216229, A216230
%K nonn,tabl
%O 0,8
%A _Philippe Deléham_, Mar 13 2013