%I
%S 1,1,1,1,2,0,1,3,2,0,0,4,5,0,0,0,4,9,5,0,0,0,0,13,14,0,0,0,0,0,13,27,
%T 14,0,0,0,0,0,0,40,41,0,0,0,0,0,0,0,40,81,41,0,0,0,0,0,0,0,0,121,122,
%U 0,0,0,0,0
%N Square array T, read by antidiagonals: T(n,k) = 0 if nk>=2 or if kn>=4, T(1,0) = T(0,0) = T(0,1) = T(0,2) = T(0,3) = 1, T(n,k) = T(n1,k) + T(n,k1).
%C T(0,2), T(1,1), T(1,2), T(1,3), ... T(n,n), T(n,n+1), T(n,n+2), ... is the sequence A140298.
%F T(n,n) = T(n+1,n) = A007051(n).
%F T(n,n+1) = 3^n = A000244(n).
%F T(n,n+2) = T(n,n+3) = A003462(n+1).
%F Sum_{k, 0<=k<=n} T(nk,k) = A038754(n).
%e Square array begins:
%e 1, 1, 1, 1, 0, 0, 0, 0, 0, ...
%e 1, 2, 3, 4, 4, 0, 0, 0, 0, ...
%e 0, 2, 5, 9, 13, 13, 0, 0, 0, ...
%e 0, 0, 5, 14, 27, 40, 40, 0, 0, ...
%e 0, 0, 0, 14, 41, 81, 121, 121, 0, ...
%e ...
%Y Cf. A000244, A003462, A007051, A038754,
%K nonn,tabl
%O 0,5
%A _Philippe DelĂ©ham_, Mar 13 2013
