login
A216177
Primes p=prime(i) of level (1,4), i.e., such that A118534(i) = prime(i-4).
1
6581, 7963, 13063, 14107, 17053, 17627, 20563, 21347, 22193, 22877, 28319, 30727, 34981, 35171, 41549, 42101, 45197, 46103, 48823, 53201, 53899, 56269, 65449, 65993, 66191, 69031, 69403, 73613, 74101, 74323, 75797, 81973, 86209, 91463, 96293, 101537, 102563
OFFSET
1,1
COMMENTS
If prime(i) has level 1 in A117563 and 2*prime(i) - prime(i+1) = prime(i-k), then we say that prime(i) has level (1,k).
LINKS
EXAMPLE
a(2) = 7963 = prime(1006) because 2*prime(1006) - prime(1007) = 2*7963 - 7993 = 7933 = prime(1002).
MATHEMATICA
With[{m = 4}, Prime@ Select[Range[m + 1, 10^4], If[MemberQ[{1, 2, 4}, #], 0, 2 Prime[#] - Prime[# + 1]] == Prime[# - m] &]] (* Michael De Vlieger, Jul 16 2017 *)
CROSSREFS
Subsequence of A125830 and A162174.
Sequence in context: A145050 A319604 A256837 * A186563 A252637 A164971
KEYWORD
nonn
AUTHOR
Fabien Sibenaler, Mar 10 2013
STATUS
approved