

A216175


Number of all polyhedra (tetrahedra of any orientation and octahedra) of any size, formed when intersecting a regular tetrahedron by planes parallel to its sides and dividing its edges into n equal parts.


3



1, 6, 20, 50, 104, 193, 329, 526, 800, 1169, 1652, 2271, 3049, 4011, 5184, 6597, 8280, 10266, 12589, 15285, 18392, 21950, 26000, 30586, 35753, 41548, 48020, 55220, 63200, 72015, 81721, 92376, 104040, 116775, 130644, 145713, 162049, 179721, 198800, 219359
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


LINKS

Table of n, a(n) for n=1..40.
Index entries for linear recurrences with constant coefficients, signature (3,2,1,0,1,2,3,1).


FORMULA

a(n) = (1/288)*(7+9*(1)^n16*(1)^(n mod 3)+24*n+124*n^2+104*n^3+22*n^4).
G.f.: x*(1+3*x+4*x^2+3*x^3)/((1+x)*(1+x+x^2)*(1x)^5).  Bruno Berselli, Sep 11 2012


EXAMPLE

For n=3, the number of tetrahedra of any orientation and size is t(3)+t(1)=15+1=16 and the number of octahedra of any size is t(2)=4 the total number being a(n)=20, where t(n) denotes the tetrahedral number A000292(n).


MATHEMATICA

Table[(1/288) (7 + 9 (1)^n  16 (1)^Mod[n, 3] + 24 n + 124 n^2 + 104 n^3 + 22 n^4), {n, 50}]


CROSSREFS

Cf. A000292, A216172, A216173.
Sequence in context: A299292 A162209 A161699 * A161409 A002415 A052515
Adjacent sequences: A216172 A216173 A216174 * A216176 A216177 A216178


KEYWORD

nonn,easy


AUTHOR

V.J. Pohjola, Sep 03 2012


STATUS

approved



