OFFSET
1,2
COMMENTS
The partial products of a(n) are A216152(n) which are the distinct values of the 'prime lcm(n)' A205957.
Let b(n) denote the nonprime numbers A018252(n).
If n = 1 then a(n) = b(n) = 1
else if a(n) < b(n) then
a(n) is a cototient of consecutive pure powers of primes (A053211),
b(n) is a prime power with exponent > 1 (A025475),
b(n)/a(n) is a prime root of n-th nontrivial prime power (A025476);
else if a(n) > b(n) then
b(n) is a number which is neither a prime power nor a semiprime (A102467);
else if a(n) = b(n) then
a(n) is the product of two distinct primes (A006881).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..1000
Peter Luschny, The von Mangoldt Transformation.
MATHEMATICA
A205957[n_] := Exp[-Sum[ MoebiusMu[p]*Log[k/p], {k, 1, n}, {p, FactorInteger[k][[All, 1]]}]]; nonPrime[1] = 1; nonPrime[n_] := Which[k0 = k /. FindRoot[ n + PrimePi[k] == k , {k, n}] // Floor; n+PrimePi[k0] == k0, k0 , n+PrimePi[k0+1] == k0+1, k0+1, n+PrimePi[k0+2] == k0+2, k0+2, True, k0]; a[1] = 1; a[n_] := A205957[nonPrime[n]] / A205957[nonPrime[n-1]]; Table[a[n], {n, 1, 60}] (* Jean-François Alcover, Jun 27 2013 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Luschny, Sep 02 2012
STATUS
approved