OFFSET
1,1
COMMENTS
Or primes p such that p (mod 35) = {1, 2, 3, 4}.
In general if 0 < m (mod p) = m (mod q) then m (mod p*q) < p (with p < q any primes).
LINKS
Robert Israel, Table of n, a(n) for n = 1..10000
EXAMPLE
37 = 2 (mod 5) = 2 (mod 7);
71 = 1 (mod 5) = 1 (mod 7);
73 = 3 (mod 5) = 3 (mod 7);
109 = 4 (mod 5) = 4 (mod 7).
MAPLE
select(isprime, [seq(seq(35*i+j, j=1..4), i=0..1000)]); # Robert Israel, Jan 18 2016
MATHEMATICA
Select[Prime[Range[100]], Mod[#, 5]==Mod[#, 7]&]
Select[Prime[Range[100]], Mod[#, 35]<5&]
PROG
(Magma) [p: p in PrimesUpTo(2500) | p mod 5 eq p mod 7]; // Vincenzo Librandi, Jan 17 2016
(PARI) isok(n) = isprime(n) && ((n % 5) == (n % 7)); \\ Michel Marcus, Jan 17 2016
(PARI) lista(nn) = forprime(p=2, nn, if(p%5 == p%7, print1(p, ", "))); \\ Altug Alkan, Jan 18 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Zak Seidov, Sep 02 2012
STATUS
approved