login
A216109
The hyper-Wiener index of the ortho-polyphenyl chain with n hexagons (see the Dou et al. and the Deng references).
3
42, 477, 1701, 4254, 8820, 16227, 27447, 43596, 65934, 95865, 134937, 184842, 247416, 324639, 418635, 531672, 666162, 824661, 1009869, 1224630, 1471932, 1754907, 2076831, 2441124, 2851350, 3311217, 3824577, 4395426, 5027904, 5726295
OFFSET
0,1
COMMENTS
The Hosoya-Wiener polynomial of the graph is n(6+6t+6t^2+3t^3)+(1+2t+2t^2+t^3)^2*(t^{2n+1}-nt^3+nt-t)/(t^2-1)^2.
REFERENCES
Y. Dou, H. Bian, H. Gao, and H. Yu, The polyphenyl chains with extremal edge-Wiener indices, MATCH Commun. Math. Comput. Chem., 64, 2010, 757-766.
FORMULA
a(n) = 3*(28+123*n+127*n^2+36*n^3+4*n^4)/2 = 3*(n+1)(4*n^3+32*n^2+95*n+28)/2.
G.f.: -3*(33*x^3-88*x^2+89*x+14)/(x-1)^5. [Colin Barker, Oct 29 2012]
MAPLE
seq(3*n*(4*n^3+20*n^2+43*n-39)*(1/2), n=1..30);
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {42, 477, 1701, 4254, 8820}, 30] (* Jean-François Alcover, Sep 23 2017 *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Emeric Deutsch, Oct 26 2012
EXTENSIONS
First formula corrected by Colin Barker, Oct 29 2012
STATUS
approved